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Abstract

In this work, we will be interested on the investigation of categorial
forms of the Axiom of Choice (AC). The results are intended to be
further results with respect to [3]. We introduce some more new categorial
forms of AC, and we discuss a number of categorial versions of the Zorn’s
Lemma.
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Introduction

In the paper [3], the notions of set forms and class forms of the Axiom of
Choice (AC) in Category Theory were introduced. For instance, the following
statements are set-forms of AC:

• “Every epic arrow of the category has a right inverse” (that is, “Every
epimorphism has a section”).

• “Every product of a non-empty family of non-initial objects is a non-
initial object”.

• “Every discrete, non-empty diagram of non-initial objects has more than
one cone”.

• “Every non-empty discrete diagram of non-initial objects has a non-
skeletal cone”.

Those set forms are taken to be statements in the language of category
theory which presuppose some equivalence with AC in the category Set (in a
precise way, which will be explained presently).

1The first and the fourth author were funded by FAPESB, Grant APP0072/2016.
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Among the statements above mentioned, the one which is more usually
related to AC within category theory is the first statement, say, ζ:

ζ ≡ “Every epic arrow has a section”.

Indeed, in Category Theory, it is said that “a category C satisfies AC” if
the relativization ζC of ζ holds in C – that is, every epic arrow in C has a
section in C.

Moreover, notice that, clearly, the relativization ζSet may be regarded as
the Axiom of Choice itself.

The class forms are considered in the same vein, i.e., those are the state-
ments in category theory which presuppose some equivalence of the Axiom of
Choice for Classes when one assumes the validity of of all of its relativizations
for any category; e.g. let ξ be the statement

ξ ≡ “The category has a skeleton” 2.

It was proved in [8], that “Every category has a skeleton” – that is, for all
C, ξC – is an equivalent of the Axiom of Choice for Classes.

The Axiom of Choice for Classes states that every conglomerate whose
elements are non-empty classes has a choice class-function. Now, let ϕ be
any statement from the language of Category Theory. We have the following
definition from [3]:

Definition 0.1 (Categorial forms of the Axiom of Choice, [3]) 1. A
statement ϕ from Category Theory is a Categorial Set–Form of the
Axiom of Choice if the Axiom of Choice is equivalent to the statement
ϕSet.

2. A statement ϕ from Category Theory is a Categorial Class–Form of
the Axiom of Choice if the validity of ϕC for all categories C is equiv-
alent to the Axiom of Choice for Classes.

This paper begins with a brief discussion about CFL. which is how we
refer to the Categorial Foundation Language; this is the language were we
assume the statements ϕ as above are actually written. The next section is
dedicated to the statement from CFL given by “Epimorphisms are surjective”
(ES). This is not a set form of the Axiom of Choice because it is relativization
to Set is a theorem of ZF. However, even in the context of set forms there is

2Recall that a skeleton of a category C is a full, isomorphism-dense subcategory C in which
no two distinct objects are isomorphic; roughly speaking, it is a “minimal” subcategory
capturing the categorical properties of C.
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some subtleties regarding ES, namely certain forms which the category of sets
is unable to differentiate from ES. By the end of this section we introduce a
new set form of AC, namely the statement “Projections have a right inverse”

Before starting to explore several categorial versions of the Zorn’s Lemma,
we dedicate Section 3 to present some considerations on final objects in Cate-
gory Theory. It is, indeed, some suitable version of the notion of final object
will allow us to provide a certain categorial version of “maximality ” in order
to define categorial versions of Zorn’s Lemma. So, we introduce in this section
some notions related to final objects, and some of them are obtained by du-
alizing the variants of initial objects reported in [3] – and others are new. In
the Section 4 we establish the categorial “Small” Zorn’s Lemma and we proved
in 4.3 that this categorial statement of Zorn’s Lemma is in fact a set form of
AC. Corollary 4.6 provides us that the categorial Small Zorn’s Lemma restrict
to any category, the categorial Small Zorn’s Lemma restrict to poset and the
categorial Poset Zorn’s Lemma restrict to a Poset, are all equivalent to the
usual AC.

In the final section, we rise questions and notes about well-ordering of the
Universe, the Beth Definability Property and algebraic class forms of AC.

1 The notions of CFL and CFL∗

Let us introduce, for this continuation of the research of the paper [3], some
new terminologies and notations.

Notation 1.1 We will denote as CFL the Categorial Foundations Lan-
guage, i.e., the language of category theory which is considered to be done
starting from some set-theoretical foundation of Category Theory which allows
one to deal with sets, classes and conglomerates. After the setting of such
structure – and there are several options to do it3 –, we assume the Axiom of
Global Choice (and its equivalences) as a part of the foundation of categories.

So, if M is such a set-theoretic structure on which one can properly deal
with the notions of sets, classes and conglomerates (see also the discussion at
page 411 of [3]), let us say that

CFL = set theoretical structure M + all of the usual categorial construc-
tions + Global Choice

Let us explain the notions of ACSets,ACCategories,ACGlobal.
First notice that CFL, besides of being the environment where we have

founded Category Theory, it is also the environment where we actually work
when we do research with categories. In particular, we are allowed to use Global

3We will explain this (in more detail) in what follows.
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Choice (together with all of its equivalences and, as one of its consequences,
choice for sets) in any categorial argument.

Let ACSets denote the Axiom of Choice for sets. Its presence, as it is
well-known, is crucial in Category Theory.

ACCategories will denote the statement of the CFL language given by “Ev-
ery epic arrow has a section”. Notice that, as any of our set-forms of the
Axiom of Choice, ACCategories is not a property of all categories: given a
category C, (ACCategories)C may hold or not; that is to say, “some categories
satisfy AC, while others don’t”. For example, in category of rings with unity,
we have that the inclusion map Z→ Q is epic and in the presence of a section,
this map would be isomorphism.

By definition, categorial set-forms of choice are equivalent in Set – but all
the interest (and, in fact, all the fun) comes from the fact that they are not
necessarily equivalent for all categories.

Obviously, ACGlobal will denote the Axiom of Global Choice.
When one proves, in Set Theory, that a certain statement is an equivalence

of the Axiom of Choice, the proof has to be performed – of course – in ZF,
which is choiceless Set Theory. In the same way, we have to take off the choice
of CFL when we have to proof that some statement of Category Theory is a
set-form or a class-form of the Axiom of Choice. So, let

CFL∗ = CFL - ACGlobal = M + All usual categorial constructions
Throughout this paper, we are working always within CFL∗. Also, we will

assume that our set-theoretical structure M is given by “ZF + two strongly in-
accessible cardinals” – but we could also work with some suitable Grothendieck
universe, which requests only one strongly inaccessible cardinal. Also notice
that, when we take off ACGlobal, we are taking off all instances of choice of our
language – including ACSets.

However, the authors are aware that, at some point of the future, inter-
mediate situations could emerge, on which could be somehow more natural to
assume only ACSets and take off only the choices strictly above the set level.

Indeed, to show equivalence of set-forms of the axiom of choice, we could
say that we would only need to assume choice up to the level of the first
inaccessible cardinal. This is explained in the next remark.

Remark 1.2 In order to prove that a certain statement ϕ is a set-form of
choice, we have to prove that

ϕSet ⇐⇒ ACSets,

and of course the proof of such equivalence could be done in a very small frag-
ment of CFL∗ – more precisely, the argument could be done at the κ-th level
of M, where κ is the first of the two inaccessible cardinals whose existence we
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have assumed for –, for the argument only needs to deal with sets, and the κ-th
level is precisely where the sets live.

In fact, we could (in an even easier way) identify ϕSet with its translation
to ZF and proceed in ZF – as we were just doing some routinary proof of some
usual equivalence of the Axiom of Choice.

To facilitate and unify, we will assume that the proofs of equivalences of
set-forms are also done in CFL∗.

The next example shows that a category may satisfy one set form and does
not satisfy another.

Example 1.3 We make use of the notation from [3]. Let PNI denote the set
form

“Every product of a non-empty family of non-initial objects is a non-initial
object.”
and CEM denote

“Every non-empty discrete diagram whose objects are all non-initial has a
cone where all constituent morphisms are epic arrows”.

Then, the locally small category Top, the category of all topological spaces
with continuous functions as morphisms, satisfies PNI (due to ACSets and Ty-
chonoff product) and CEM (since the projections are continuous and surjective
in ZFC) – but it does not satisfy ACCategories. To see this, one only needs
to pick a continuous bijection between two non-homeomorphic spaces to get an
epimorphism which does not have a section. For details, see [3]. Another (and
even simplest) example to see this, is the following: consider a space X with
two topologies τ1 and τ2, such that τ2 ( τ1 (that is, τ1 is strictly finer than τ2),
and consider the identity map idX : (X, τ1) → (X, τ2). This map is epic, but
cannot have a section.

2 ES – Epimorphisms are surjective

Consider the form ES, which is the statement from CFL given by “Epimor-
phisms are surjective” .

As surjectiveness is a concept of functions between sets, of course the form
ES can only be considered within concrete categories – which are those
categories equipped with a faithful functor to the category Set4.

At a first glance, one could conjecture that ES is a set form of the Axiom
of Choice. As a first fact about ES, we remark that this is not the case. It
is easy to show that, in ZF, a function f is an epic arrow (that is, it is right

4In many cases, such faithful functor is given by the well-known “forgetful functor”, but
not always.
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cancellable, meaning that g = h whenever gf = hf) if, and only if, it is
surjective.

Well, if such statement is not even a set form of choice, why are we interested
on ES ? First of all, ES recently showed up playing a remarkable role in the
context of algebraic logic. In [2], the authors show equivalence between ES
and the Beth definibility, in some deductive systems which are Blok-Pigozzi-
algebraizable.

However, even in the context of set forms we have some subtleties regarding
ES – more precisely, regarding certain forms which the category of sets is
unable to differentiate from ES.

Remark 2.1 ZF-Equivalence of ACSets

ZF proves that ACSets is equivalent to the statement “Given a product
of non-empty sets, all projections are surjective” .

This gives rise to a new set form of choice, which will denote by PE,
which states as: “Given a product of non-initial objects, all projections are
epic arrows” .

Of course, in categories with all small products PE coincide with CEM.
We have also the following ZF-equivalence of ACSets, stated in the next

remark.

Remark 2.2 ZF-Equivalence of ACSets

ZF proves that ACSets is equivalent to the statement “Given a product
of non-empty sets, all projections have sections” .

We have therefore the following

Corollary 2.3 The existence of sections only for those epimorphisms which
are projections is sufficient to ensure the validity of the Axiom of Choice for
Sets.

Of course, we will take this opportunity to define a new set form of the
Axiom of Choice, which we will denote as PRI. So, PRI is the statement
“Projections have a right inverse” .

During the rest of this section, “projections” will be always a short for
“projections of a product of non-initial objects” .

Let us discuss a little bit the new axiom PRI in relation with PE. These
two set forms of choice, which we have introduced inspired by ES, are related
in the purely CFL language (meaning, there is no need to restrict ourselves to
concrete categories, for instance):



More on Categorial Forms of the AC 357

Remark 2.4 (a) We have the following implication:
PRI⇒ PE,

which says that, for any category C, PRIC ⇒ PEC.
(b) The reverse implication does not hold. For instance in the category of
rings with unity, PE holds, but PRI is false: Take the product Z × Z2 whose
projections are epic arrows, but we do not have right inverse in the case of the
projection to Z2.

In fact, the existence of a right inverse for a given, arbitrary morphism
easily implies that such morphism is right cancellable (and so, epic). In partic-
ular, there is no need to introduce some form as “Every epic projection has a
section” , since if we say that every projection has a right inverse then we are
automatically saying that projections are epic arrows.

By a similar reasoning we show that ES is a consequence of ACCategories

in the next remark.

Remark 2.5 It holds that
ACCategories⇒ ES,

in the sense that, for any concrete category C, (ACCategories)C ⇒ ESC.

Indeed: as having a section, in a concrete category, is enough to ensure
that a given morphism is surjective, and if we say that all epimorphisms have
sections we are automatically saying that all epimorphisms are surjective.

In particular, via a contrapositive arguing we may use ES as a kind of test
for the validity of ACCategories; if ES is not satisfied by a given category, then
ACCategories will also fail in such category. This is applied in the next example.

Example 2.6 Denote by DLat the category of distributive lattices with lattice
homomorphisms. We show that this concrete category does not satisfy ES –
and so, by the above remark, does not satisfy ACCategories.

Let M2 be the diamond-like lattice with four distinct elements given by
{⊥, a, b,>}, where a and b are incomparable under the lattice order, and let
L be the sublattice {⊥, a,>}. Then, the inclusion morphism i : L → M2 is a
non-surjective epimorphism. One has only to notice that, if g : M2 → L′ is
a lattice homomorphism from M2 to any distributive lattice L′ then the value
of g(b) has to be the (unique) complement of g(a) in the interval [g(⊥), g(>)].
We omit the details.

In particular, the contrapositive arguing we have just mentioned give us
that the category DLat does not satisfy ACCategories. On the other hand, the
concrete category of Boolean Algebras satisfies ES, cf. [7].

In the next example, we show that the category Top does satisfy PRI.
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Example 2.7 Denote by Top the category of topological spaces introduced in
1.3. We know that Top does not satisfy ACCategories, cf. 1.3. We will show
that it does satisfy PRI. It suffices to show that at least those epimorphisms
which are projections do have a section.
Indeed: let I 6= ∅ and {Xi : i ∈ I} be a family of non-empty topological spaces.
Fix j ∈ I. We claim that the projection

πj :
∏
i∈I

Xi → Xj

has a right inverse.
As ACSets is available in CFL, fix z ∈

∏
i∈I

Xi. Define g : Xj →
∏
i∈I

Xi in

the following way: for any x ∈ Xj, g(x) = c = (ci)i∈I , where ci = zi if i 6= j
and cj = x. It is easy to check that g is a continuous, right inverse of πj (and,
moreover, g is a homeomorphism between Xj and the subspace of

∏
i∈I

Xi given

by
∏

i∈I\{j}
{zi} ×Xj.

3 Some considerations on final objects

In the paper [3], some considerations were made on different versions of initial
objects in the Chapter 3. As remarked in 2.25, page 420 op.cit. , the Axiom
of Choice could be arguably regarded as a statement which is “mainly talking
about the empty set, and not about the products”, and with this in mind some
different variations of the notion of initial object were introduced and discussed
in the paper referred to. Clearly, all notions introduced there can be extended
(by duality) to corresponding notions of final objects. In this section, we will
talk about some new versions of final objects, in order to be able to introduce
some categorial variations of the Zorn’s Lemma5.

We recall the notion of final object, denoted by 1 in a given category C
as an object, that permits for every other object a in category C, an unique
morphism a → 1. Let us introduce more versions of kinds of final elements.
In the next definition, 3.1, the first four versions are the obvious duals of the
(versions of) initial objects reported in Section 3 of [3]. The fifth version is
mentioned in [10], and the last two are, to the best of the authors knowledge,
unprecedented in the literature and are being introduced in this very work.

Definition 3.1 Let C be a category with the final object 1 and a an object in
C. Then we have

5In some further research, we intend to proceed analogously with respect to the Hausdorff’s
Maximal Principle – which states as “Every parcial order includes a maximal chain” –, cf. [4]
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(a) The object a is nearly final iff there exists a monomorphism a→ 1.
(b) The final object 1 is strict final iff for every object a ∈ ob(C) and
every f : 1→ a, f is an isomorphism.
(c) The object a is quasi final iff for every object b in C there is at most
one morphism form b to a.
(d) The object a is weakly final iff for every object b in C there is a
morphism from b to a.
(e) The object a is almost terminal6 iff for every b ∈ ob(C) and every
u : a→ b, there is v : b→ a such that v ◦u = 1a – that is, u has an left inverse.
(f) The object a is almost maximal iff for every object b in C, if there
is a morphism from a to b, then there is a morphism from b to a.
(g) The object a is maximal iff for every object b in C a morphism from
a to b is an isomorphism.

Clearly, one could dualize all of these notions and obtain the correspondent
variants of initial objects; recall that, for the first four of these last ones,
the corresponding notions of initiality were already investigated in [3] – and
these versions of initial objects were very important, regarding the categorial
forms of AC in the previous work referred to. In a forthcoming work, we
have more versions of categorial Zorn’s Lemma, cf. [4], connecting these with
Hausdorff’s Maximal Principle – which is also an equivalent of the classical
Axiom of Choice. In the following section we will talk about a small Zorn’s
Lemma. There, we will need some little bit finer notions of final objects in a
category, and this justifies Definition 3.1. Before getting to the next section,
let us prove some simple facts about our new objects introduced above.

Proposition 3.2 1. Given a category associated to a poset, then holds:
(a) Every object is quasi final.
(b) An object is final iff is nearly final iff is strict final iff weakly final.
(c) An object is maximal iff it is almost maximal iff it is almost terminal.

2. Let C be a category. 1 is final object ⇒ is almost terminal ⇒ 1 is
almost maximal.

3. An object is strictly final iff it is final and maximal.

4. 1 is final object iff 1 is quasi final and weakly final.

5. A weakly final object always is almost maximal.

6. Let C be a category with the zero (i.e., initial and final) object 0. Then
0 is almost terminal.

6This notion is due to Kashiwara and Shapira, [10]
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Proof: 1. is straightforward. 2. Let 1 be final object and consider an
object b in C with a morphism u : 1 → b. But always we have an unique
morphism ! : b → 1, and so the composition ! ◦ u is a morphism between 1.
The fact that 1 is final object gives that ! ◦ u is the identity on 1. The second
implication is immediate from the definitions.

3., 4. and 5. follow from definitions.
6. Suppose the morphism u : 0 → a for an object a in category C. The

fact that 0 is initial implies that u is unique. But 0 is also final and so there
is v : a→ 0 unique. Therefore, v ◦ u = 10 and u has a left inverse.

Example 3.3 1. We know that the category of groups with morphisms the
group morphisms has a zero object given by 0 := {e}. By the above
remark, {e} is almost terminal.

2. Considering C the category of Boolean algebras without the trivial algebra.

• 2 is a almost terminal object.

• Every object in C is weakly final.

• There is no final object (hom(B, 2) ∼= Stone(B)).

3. Considering the category C′ represented by the diagram below such that
f ◦ g = e and e ◦ e = e.

a

ida

��
f

%%
b

idb

��

e

YY
g

ee

C =

·∐
α<ξ

C′α, C′α = C′, ξ ≥ 2.

Then in C we have the following
(i) there is no weakly final object,
(ii) every object is almost maximal
(iii) an object is quasi final (respectively almost terminal) iff it is of the
following form (a, α) with α ∈ ξ.
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4 The “Small” Zorn’s Lemma

In [3] is introduced (and is dealt with) a number of categorial set forms
of choice (as PNI, CEM, and many others). However, a categorial form of
Zorn’s Lemma didn’t show up – and, as far as our knowledge goes, there is no
“canonical” categorial version of Zorn’s Lemma in Category Theory.

As mathematicians, the authors believe that there should be some cate-
gorial version of Zorn’s Lemma. Well, we have some proposals. And, in order
to present them, we first introduce some notions.

The notions of chain, maximal objects and almost maximal objects
are used. The last two have been introduced in Section 3, and the other will
be clarified in the following.

Recall that a diagram in a category C is a functor D : I // C , where I
is an index category (or scheme) of the diagram; intuitively, you may think
that I is simply an oriented multigraph.

Note that a functor is monic7 iff the functor is injective in the objects and
faithful. Accordingly, we will say that a diagram D is a monic diagram if D
is a monic functor.

Definition 4.1 (a) A chain in a category C is a monic functor F : T // C ,
where T is a totally ordered set viewed as a category.

(b) A chain in a diagram D, will be given by the composition of a chain
in the index category F : T // I , with the diagram functor D : I // C ,
i.e., D ◦ F .

In the preceding definition, we asked the funtors to be monic since this
requirement captures the notion of “subcategory” – so, we will be able to
formally regard chains in categories as “totally ordered subcategories”, as will
be seen presently.

In what follows, we introduce a form which is a a categorial version of
Zorn’s Lemma, denoted by ZLsmall as follows:

For a given category C, (ZLsmall)C is the following statement:

“For every small index category I not empty, and for every monic diagram
D : I // C , then the image of the diagram D(I) has an almost maximal
object whenever every chain in D(I) has a cocone in D(I)”.

Of course, the “small” refers to the above restriction we have made in the
index category.

7One can see a monic functor as a monic morphism in the category of categories, denoted
by CAT , where the objects are categories and the morphisms are functors.
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For a given category C, (ZLPoset)C is the following statement:

For every category P not empty, where P is the category associated to a poset
and for every monic diagram D : P // C , then the image of the diagram
D(P ) has an almost maximal object whenever every chain in D(P ) has a cocone
in D(P ).

Now, we are able to present our main results.

Theorem 4.2 Zorn’s Lemma in the category Set is equivalent to the statement
that for all non empty poset (Q;≤), it holds (ZLPoset)Q.

Proof: For ⇒, take a non empty poset (Q;≤) and the associated category
Q. Consider the identity map id : Q → Q (obviously it is a monic functor).
Suppose that every chain in Q has a cocone, that is an upper bound, then by
Zorn’s Lemma in Set, there is a maximal element in Q. By 3.2, this is almost
maximal in Q.

For the other implication, let (Q;≤) be a poset such that every chain has
an upper bound. Consider the monic diagram id : Q → Q. Remark that the
upper bounds are cocones in the associated category Q, and so by (ZLPoset)Q,
Q has an almost maximal element, which is maximal in Q.

The proof of next theorem is similar.

Theorem 4.3 Zorn’s Lemma in the category Set is equivalent to the statement
that for all not empty poset (Q;≤) seen as category Q, it holds (ZLsmall)Q.

Proof: For the right to left direction, take simply I := Q and D := id,
then the proof of ⇐ of the previous theorem gives our result. For the other
direction, if given a non empty small I and D : I → Q a monic diagram, such
that every chain in D(I) has a cocone, i.e., every chain in D(I) ⊆ Q has an
upper bound, the use of Zorn’s Lemma gives an almost maximal element in
D(I).

Theorem 4.4 (ZLPoset)Set implies Zorn’s Lemma in Set.

Proof: Let (Q;≤) be a partial order satisfying the usual requirements of
Zorn’s Lemma (non-empty, every chain has an upper bound). Denote by Q
the usual associated category to (Q;≤) - with morphisms given by the order
relation. Remark that Q is a small category.

Let D : Q // Set be the diagram functor which maps every a ∈ Q to
the downset of a, given by ↓ a = {x ∈ Q : x 6 a}, and maps every arrow 6
to the inclusion function8.

8Notice that this is not a full, but is a monic functor
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As every chain in Q has an upper bound, in the diagram D(Q) we have
that every chain has a cocone – and so there is an almost maximal object in
D(Q).

If ↓ b is such almost maximal object, it is easy to check that b is a maximal
element of Q and we are done.

Our last theorem connects the Axiom of Choice in category Set, ACSets,
with our version ZLsmall.

Theorem 4.5 Zorn’s Lemma in Set implies for all category C, (ZLsmall)C.

Proof: Let C be a category and I a small not empty category with D : I →
C a monic functor. Then we define the following poset

P := {T ⊆ D(I)| T is a chain in D(I) }. 9

with the following order ≤:
T1 ≤ T2 iff T1 ⊆ T2,

where the inclusion ⊆ on the right side means inclusion of subcategories. Re-
mark that P is not empty, because from I 6= ∅, there exists a ∈ ob(D(I)) and
T := {{a}, ida : a→ a} is a chain in P.

Let now {Tx}x∈X with (X;≤X) linearly ordered by x ≤X y iff Tx ≤ Ty,
be a chain in P. Then we show that

⋃
x∈X Tx is an upper bound of the family

{Tx}x∈X . First,
⋃
x∈X Tx is a subcategory of D(I) and a chain. For this, take

a, b ∈
⋃
x∈X Tx. Then exists y ∈ X such that a, b ∈ Ty. If a 6= b10, we have

either f : a → b or g : b → a. Remark that these morphisms are unique. And
so either f ∈ Ty or g ∈ Ty. Clearly,

⋃
x∈X Tx is an upper bound in P.

Applying Zorn’s Lemma, we have T′ maximal in P. We show that T′ has a
maximum. If not, let K ′ := (k′, {fi}i∈I)∪{idk′} where (k′, {fi}i∈I) is a cocone
in D(I) about T′, we extend properly T′ by the chain T′∪K ′. We can show that
T′ ∪K ′ is a chain and so a real extension of T′, contradicting the maximality
of T′.

It remains to show that a := max(T′) is almost maximal. For this, remark
that for all b ∈ ob(D(I)) with f : a → b, we have that b ∈ T′. Suppose not,
it is b 6∈ T′. Then we can extend the chain T′ by joining f : a → b and ida,
but this contradicts maximality of T′. So b ∈ T′, and consequently, there is a
morphism g : b→ a in T′, finishing our proof.

We have the immediate

Corollary 4.6 With the above notation are equivalent:
(a) Zorn’s Lemma in Set.
(b) For all poset Q, (ZLPoset)Q.

9or equivalently one can see T as a subcategory of D(I) limearly ordered.
10If a = b, then clearly ida : a→ a is an element of Ty.
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(c) For all poset Q, (ZLsmall)Q.
(d) For all category C, (ZLsmall)C.

When taken together, the three theorems have some remarkable conse-
quences.

Remark 4.7 (a) As the equivalences were all proved in the same language
CFL∗, after combining Theorems 4.2, 4.3 and 4.4, it should be clear we have
proved that a certain property of all categories is equivalent to the
Axiom of Choice for sets. This suggests that the statement of ZLsmall

allows us to work in every level of generality.
(b) In CFL, the Axiom of Choice is available. So, when it comes to Cate-

gory Theory itself, ZLsmall is, indeed, a valid property of all categories.
(c) At least when we restrict ourselves to the categories, ZLsmall behaves

differently of all previously introduced set forms of the Axiom of Choice (in-
cluding ACCategories itself), because there will not be the case that, considering
a given category, “ZLsmall may hold or not” – it will do hold.

Considering the above remark, it seems like ZLsmall is a set form of choice
which is even more intrinsecal than ACCategories itself.

A remarkable manifestation of such phenomenon (namely, the above de-
scribed “separation” between the roles of ACCategories and ZLsmall within Cat-
egory Theory) appears in the context of Boolean-valued and Heyting-valued
models of Set Theory. According to [6], given a complete Heyting algebra H,
one obtains the H-valued universe V H carrying out the well-known definition
of the Boolean-valued universe V B with H in place of B. In V H all axioms
of intuitionistic first-order logic are true. Since AC implies the law of the ex-
cluded middle (which holds in V H if and only if H is a Boolean algebra), one
concludes that AC does not hold in any V H for which H is not a Boolean
algebra. But, Zorn’s lemma is always valid in V H . This shows that, in IZF,
Zorn’s lemma does not imply AC.

5 Notes and Questions

There are lots of questions which could raise from this ongoing work. For
instance:

Question 5.1 Considering any of the set forms of the Axiom of Choice we
have mentioned in this presentation; are there functors which preserve such
(or some of these) forms ?

In what follows, we discuss some more specific issues, in three subsections:
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5.1 Well-ordering the Universe

Here we discuss strong forms of the Axiom of Choice: those with ensure that
there is a well-ordering of the universe. We understood a well-ordering of
the universe as a class-relation which well-orders the universe V of sets. As
discussed in [3] (pages 412 and 413), the existence of a well-ordering of the
universe is equivalent to a number of statements, including the Axiom of Global
Choice – which states that there is a choice-class function defined on the class
of all non-empty sets. More precisely:

Remark 5.2 (see [3], Proposition 2.3) The following statements are equiv-
alent:
(a) The existence of a well ordering of the universe;
(b) The Axiom of Global Choice;
(c) The Axiom of Choice for Classes; and
(d) The Axiom of Choice for Conglomerates.

We also recall that, as introduced in [3] (and already noticed in the In-
troduction of this paper), a categorial class-form the Axiom of Choice is a
statement ϕ from Category Theory such that the validity of ϕC for all cate-
gories C is equivalent to the Axiom of Choice for Classes. Our archetypical
example of a categorial class-form of choice – which is the statement ζ which
says “There is a skeleton in the category” – has, indeed, a nice property: the
validity of ζC for all locally small category C is equivalent to the Axiom of
Choice for Classes (see, again, [3]).

The preceding observation suggests the following questions:

Question 5.3 (a) Is there some statement of a form ZLlocally small (allowing I

to be locally small in the diagram D : I // C , and changing the definition of
chain in a category in order to consider the presence of totally ordered classes)
which could imply the Axiom of Global Choice, in any of its equivalent forms?

(b) How far would it be reasonable to go if we want/need some kind of
ZLfull?

Of course, ZLfull would correspond to the strongest (however, still reason-
able) categorial form of Zorn’s Lemma we could come out with. As one could
expect, if we accept that categorial versions of Zorn’s Lemma could range over
highly complex structures such as illegitimate conglomerates11, then one could
prove, indeed, the well-ordering the universe.

11A conglomerate X is said to be a illegitimate conglomerate if it cannot be indexed by a
class (see [1], page 16).
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For instance, let

W = {〈Y, <Y〉 : Y is a class and <Y is a class relation which well-orders Y }.

Consider, in the illegitimate conglomerate W, the conglomerate-relation
≺W given by the well-known end-extension order12. Exactly as in a proof
of ZL ⇒ WO (see, e.g., [11], page 107), one can easily check that any ≺-
conglomerate-chain has a upper bound in W, obtained by the union of the
members of the conglomerate-chain (ordered by the union of the orders on
such members). So, let us consider the statement (ZLPoconglomerates)C (where
C range over generalized categories where we allow objects to be classes) given
by

For every non-empty category P , where P is a category associated to a
poconglomerate, i.e., a conglomerate partially ordered by a conglomerate-relation,
and for every monic diagram D : P → C, then the image of the diagram D(P )
has an almost maximal object whenever every conglomerate-chain in D(P ) has
a (commutative) cocone in D(P ).

If we take, in our context, C = W = P and D the identity functor, the
almost maximal object of W (which is given by (ZLPoconglomerates)W , since we
have already noticed the existence of upper bounds inW for every conglomerate
≺-chain) has to be a well-ordering of the universe V (otherwise we would
be able to properly extend it to a ≺-larger well-ordering on a class). This
shows that ZLPoconglomerates (that is, the validity of (ZLPoconglomerates)C for all
generalized category C) would give us the Axiom of Global Choice. Of course,
the interest of the question raised above is to look for some weaker version of
ZLPoconglomerates which could perform the very same job; ZLPoconglomerates is,
clearly, too much to ask. It would be very nice if some “locally small Zorn’s
Lemma” could well-order the universe of sets13.

12If 〈A,<A〉, 〈B,<B〉 are well-ordered structures, we say that 〈A,<A〉 precedes 〈B,<B〉 in
the end-extensior order ≺ if (i)A ⊆ B; (ii)∀x, y ∈ A[x <A y ⇐⇒ x <B y], i.e., <A ⊆ <B ;
and (iii) ∀x ∈ A∀y ∈ B \ A[x <B y]. In words: 〈A,<A〉 ≺ 〈B,<B〉 if 〈A,<A〉 is an initial
segment of 〈B,<B〉.

13Let us describe another construction of a well-ordering of the universe – which, un-
fortunately, still relies on conglomerates. Let W = {〈Y,<Y 〉 : Y is a set and <Y

is a set relation which well-orders Y } - that is, W is the class of all well-ordered sets, and
considered W ordered by the end-extension relation. Let E be the conglomerate of all well-
ordered class-chains in W, and consider E ordered by the end-extension relation over the well-
ordered class-chains. A variation of the above arguments with ZLPoconglomerates would provide
a maximal well-ordered conglomerate-chain in E ; the union of such maximal conglomerate-
chain clearly provides a well-ordering of the universe. Constructions of this kind – aiming
to exhibit maximal chains in ordered structures, after applying suitable categorial forms of
choice – will be explored in further research ([4]).
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5.2 Hausdorff Maximal Principle and Teichmüller-Tuckey prin-
ciple

Besides pursuing new categorial forms of AC, we intend to explore categorial
forms of statements on partially ordered sets which are equivalent to the Axiom
of Choice, namely Hausdorff’s Maximal Principle and Teichmüller-Tuckey’s
Maximal principle – and their relationships with those here established cate-
gorial versions of Zorn’s Lemma.

These categorial forms on partially ordered sets are slightly different from
the categorial set-forms of Axiom of Choice viewed until here. As we have
seen, a statement ϕ is a categorial Set-Form of the Axiom of Choice if the
Axiom of Choice for Sets is equivalent to the statement ϕSet. The categorial
poset-form of the AC is a categorial statement ϕ such that ϕ(P,≤) ((P,≤) is
viewed as a category), for any poset (P,≤), is equivalent to Axiom of Choice.
This approach will probably unify some of the results provided in 4.2.

5.3 ES and the Beth Definability Property

The form ES – viewed as a purely algebraic property – was shown (by Blok and
Hoogland, [2]) to be related to a meta-logical property in Abstract Algebraic
Logic (more specifically, the Beth Definability Property; and, in fact, it was
shown by Blok and Hoogland that a perfect correspondence between Beth
Property and ES holds for a large class of equivalential logics).

The authors believe that forms like the ones mentioned in this work could
give raise to a number of bridge theorems, meaning, theorems which con-
nect meta-logical properties with algebraic, categorial properties (in logics as
algebraizable logics, equivalential logics, etc.).

The authors believe that some suitable reformulation of the Beth Defin-
ability Property – which asserts that, under certain assumptions, whenever a
certain set of variables is definable implicitly in terms of other set of vari-
ables, then there is some explicit witness of such definability – will be able to
constitute a set form of the Axiom of Choice.

5.4 Algebraic class forms of the Axiom of Choice

An even more abstract approach to class and set forms of choice will correspond
to algebraic class forms of the Axiom of Choice, which we intent to introduce
in the continuation of this research.

Those forms will be given in the setting of Algebraic Set Theory (Joyal, Mo-
erdijk, [9]). This categorial approach to Set Theory is developed in a framework
given by a “category of classes”, a pre-topos of Heyting, together with a no-
tion of “small maps”. The notion of “set” itself in this particular setting is,
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indeed, introduced a posteriori, through the notion of ZF-algebra: the free
ZF-algebra satisfies an intuitionistic form of the ZF axioms.

We intend to investigate the possible relations between our “meta-external”
versions of AC in the underlying Heyting pre-topos – the category of classes
– and our “internal” forms of AC in some versions of intuitionistic NBG
associated to the free ZF-algebra

6 Summary of definitions

Here we present some basic categorial definitions for benefit or convenience to
the reader 14.The definitions 1 to 17 were taken from [1] and [10]. The last
definitions are a summary of categorial forms and related forms of AC.

1. Category: Is a quadruple A = (O, homA, id, ◦) consisting of

(a) A class O whose members are called A−Object
(b) For each pair (A,B) of Aobjects, a class homA(A,B) whose mem-

bers are called Amorphism from A to B.

(c) For each A− object A, a morphism idA : A → A called A-identity
on A

(d) A composition law associating with each A-morphisms A
f→ B

and B
g→ C an A-morphism A

g◦f→ C called the composite of f and
g, subject to the following conditions:

i. composition is associative; i.e., for morphisms A
f→ B, B

g→ C

and C
h→ D, the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f

ii. A-identities act as identities with respect to composition; i.e.,

for A- morphism A
f→ B, we have f ◦ ifA = f = idB ◦ f .

2. Locally Small and Small Categories: A category is said to be locally
small if hom(A,B) is a set instead of a proper class.
A category is small if it is locally small and if O is also a set.

3. Subcategory: A category A is said to be a subcategory of a category
B provided that the following conditions are satisfied:

(a) Ob(A) ⊆ Ob(B)

(b) For each A,A′ ∈ Ob(A), homA(A,A′) ⊆ homB(A,A′)

(c) For each A ∈ Ob(A), B-identity on A is the A-identity on A

14Thanks to the Referee for suggest it.
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(d) The composition law in A is the restriction of the composition law
in B to the morphisms of A

4. Duality: For any category A = (O, homA, id, ◦) the dual (or oppo-
site) category of A is the category A = (O, homAop , id, ◦op), where
homAop(A,B) = homA(B,A) and f ◦op g = g ◦f (Thus A and Aop have
the same objects and, except for their direction, the same morphisms.)

5. Monomorphism (Epimorphism): A morphism f : A → B is called
monomorphism (or monic arrow) if for every pair g, h : C → A, then

(f ◦ g = f ◦ h) =⇒ (g = h)

The dual of a monomorphism is called epimorphism (or epic arrow),
i.e., a epimorphism in a category A is a monomorphism in Aop.

6. Isomorphism: A morphism f : A→ B is called isomorphism provided
that there exists a morphism g : B → A with g ◦f = idA and f ◦g = idB.
Such a morphism g is called inverse of f .

7. Section of a morphism: A section of a morphism f : A → B is a
right inverse morphism g : B → A, i.e., f ◦ g = idB

8. Functor: If A and B are categories, a functor F from A to B is a
function that assigns to each A-object A a B-object F (A), and to each
A-morphism f : A → A′ a B-morphism F (f) : F (A) → F (A′), in such
way that

(a) F preserves composition; i.e., F (g ◦ f) = F (g) ◦ F (f).

(b) F preserves identity; i.e., F (idA) = idF (A) for each A-object A.

9. Full and Faithful Functors: A functor F is called Full provided that
the restriction function F : homA(A,A′) → homB(F (A), F (A′)) is sur-
jective for each A,A′ ∈ Ob(A).
F is Faithful if the restriction above is injective.

10. Concrete Category: Let X be a category. A concrete category
over X is a pair (A, U), where A is a category and U : A → X is a
faithful functor. U is called the forgetful (or underlying) functor of
the concrete category and X is called the base category for (A,U).

11. Isomorphism-dense Subcategory: A full subcategory A of a cate-
gory B is called Isomorphism-dense provided that every B-object is
isomorphic to some A-object.
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12. Skeleton of a category: is a full, isomorphism-dense subcategory in
which no two distinct objects are isomorphic.

13. Diagram: A diagram in a category A is a functor D : I → A. The
domain I is called scheme for the diagram. A diagram with small (finite)
scheme is said to be small (finite).

14. Cone (Cocone): LetD : I→ A be a diagram. A Cone c = (c, {φi}i∈Ob(I))
over D is a A-object c together with a family of morphisms φi : c→ F (i)
for each object i ∈ Ob(I) such that for any morphism h : i→ j, we have
that F (h) ◦ φi = φj . A Cocone is the dual of a cone.

15. Limits (Colimits): A limit over a diagram D : I → A is a cone L =
(l, {φi}i∈Ob(I)) with the universal property with respect to cones, i.e., for
every cone c = (c, {φ′i}i∈Ob(I)) over D, there exists a unique morphism
k : c→ l such that φi ◦ k = φ′i for each i ∈ Ob(I).Colimit is the dual of
a limit.

16. Product (Coproduct): Let F = {ai}i∈I be a family of A-object. The
product of F is the limit of the diagram D : I → A, considering the
index set I as the scheme of the diagram such that homI(i, j) = ∅ for
each i, j ∈ I (discrete diagram). A coproduct is the dual of a product.

17. Equalizer (Coequalizer): An equalizer over a parallel pair f, h : a→
b is the limit of the finite diagram of the shape

a
f
//

h // b

A coequalizer is the dual of a equalizer.

From now on we summarize the categorial forms and related forms of AC.

18. PNI: “Every product of a non-empty family of non-initial objects is a
non-initial object”

19. CEM: “Every non-empty discrete diagram whose objects are all non-
initial has a cone where all constituent morphisms are epic arrows”

20. ES: “Epimorphisms are surjective”
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21. PE: “Given a product of non-initial objects, all projections are epic ar-
rows”

22. PRI: “Projections have a right inverse”.

23. (ZL)Small: “For every small index category I not empty, and for every
monic diagram D : I // C , then the image of the diagram D(I) has
an almost maximal object whenever every chain in D(I) has a cocone in
D(I)”

24. (ZL)Poset: “For every category P not empty, where P is the category
associated to a poset and for every monic diagram D : P // C , then
the image of the diagram D(P ) has an almost maximal object whenever
every chain in D(P ) has a cocone in D(P )”.

25. (ZL)Poconglomerates: “For every non-empty category P , where P is a
category associated to a poconglomerate, i.e., a conglomerate partially
ordered by a conglomerate-relation, and for every monic diagram D :
P → C, then the image of the diagram D(P ) has an almost maximal
object whenever every conglomerate-chain in D(P ) has a (commutative)
cocone in D(P )”.
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